
 1 

  

Abstract— Accurate smartphone-based outdoor localization 

system in deep urban canyons are increasingly needed for various 

IoT applications such as augmented reality, intelligent 

transportation, etc. The recently developed feature-based visual 

positioning system (VPS) by Google detects edges from 

smartphone images to match with pre-surveyed edges in their map 

database. As smart cities develop, the building information 

modeling (BIM) becomes widely available, which provides an 

opportunity for a new semantic-based VPS. This article proposes 

a novel 3D city model and semantic-based VPS for accurate and 

robust pose estimation in urban canyons where global navigation 

satellite system (GNSS) tends to fail. In the offline stage, a material 

segmented city model is used to generate segmented images. In the 

online stage, an image is taken with a smartphone camera that 

provides textual information about the surrounding environment. 

The approach utilizes computer vision algorithms to rectify and 

hand segment between the different types of material identified in 

the smartphone image. A semantic-based VPS method is then 

proposed to match the segmented generated images with the 

segmented smartphone image. Each generated image holds a pose 

that contains the latitude, longitude, altitude, yaw, pitch, and roll. 

The candidate with the maximum likelihood is regarded as the 

precise pose of the user. The positioning results achieves 2.0m level 

accuracy in common high rise along street, 5.5m in foliage dense 

environment and 15.7m in alleyway. A 45% positioning 

improvement to current state-of-the-art method. The estimation of 

yaw achieves 2.3° level accuracy, 8 times the improvement to 

smartphone IMU. 

 
Index Terms—Localization, Navigation, Smartphone, VPS, 

Urban Canyons, Pedestrian, GNSS, BIM, 3D Building Models  

1. INTRODUCTION 

RBAN localization is an essential step to the 

development of numerous IoT applications such as digital 

management of navigation, augmented reality, commercial 

related services [1], and an indispensable part of our daily lives 

due to its widespread application [2]. For indoor areas, Wi-Fi 

based localization has become extremely popular and many 

researchers are focused in this area [3-5]. However, the use of 

Wi-Fi in urban areas is still very challenging, suffering tens of 

meters even in strong signal conditions [6]. As indicated in [7], 

the calibration of Wi-Fi fingerprinting database and the density 

of Wi-Fi beacons in urban areas pose a lot of challenges. As a 

result, Wi-Fi is mostly suitable for indoor positioning. In the 

context of outdoor pedestrian localization, the application of 

global navigation satellite system (GNSS) is the key technology 

to provide accurate positioning/timing service in open field 

environments. Unfortunately, its positioning performance in 

urban areas still has a lot of potential to improve due to signal 

blockages and reflections caused by tall buildings and dense 

foliage [8]. In such environments, most signals are non-line-of-

sight (NLOS) which can severely degrade the localization 

accuracy [9]. Hence, they cause large estimation errors if they 

are either treated as line-of-sight (LOS) or not used properly 

[10]. Therefore, efforts have been devoted to developing 

accurate urban positioning systems in recent years. A review on 

state-of-the-art localization is published in 2018 [11]. Each of 

these technologies has its advantages and limitations. However, 

some of these solutions face other challenges, such as mobility, 

accuracy, cost, and portability. For a pedestrian self-

localization system, it should be accurate and efficient enough 

to provide positioning information [12]. Nowadays, a personal 

smartphone is equipped with various embedded sensors, such 

as gyroscope, accelerometer, vision sensors, etc. These sensors 

can be used for urban localization. The requirement of being 

inexpensive, easy to deploy, and user friendly are also satisfied. 

With the rise of smart cities, 3D city models have been 

developing rapidly and have become widely available [13]. An 

idea called GNSS shadow matching was proposed to improve 

urban positioning [14]. It first classifies the received satellite 

visibility by the received signal strength and then scans the 

predicted satellite visibility in the vicinity of the ground truth 

position. Position is then estimated by matching the satellite 

visibilities. Another method uses ray-tracing–based 3DMA 

GNSS algorithms that cooperate with pseudorange have been 

proposed [15]. The integration of the shadow matching and 

range-based 3DMA GNSS are proposed in [16]. Where the 

performance of this approach in multipath mitigation and 

NLOS exclusion depends on the accuracy of the 3D building 

models [17].
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Fig. 1. Flowchart of the proposed semantic-based VPS based on segmented smartphone image and segmented generated images. 

 

In the last few years, there has been an increasing interest in 

inferring position using 3DMA and vision-integrated methods. 

The motivation is that these are complementary methods, which 

in combination can provide rich scenery information. The major 

reason is that high-performance modern smartphones provide 

cameras, and computing platform for storage, data processing, 

and fusion, which can be easily exploited. The general idea 

behind most of these approaches is to find the closest image to 

a given query picture in a database of pose-tagged images 

(three-dimensional position and three-dimensional rotation, 

adding up to six degrees of freedom [DOF]). 

Research have demonstrated that it is possible to obtain 

precise positioning by matching between a camera image and a 

database of images. One popular approach uses a sky-pointing 

fisheye camera equipment to detect obstacles and buildings in 

the local environment [18]. When it is used in conjunction with 

image processing algorithms, they allow the matching of 

building boundary skyplot (skymask) to obtain a position and 

heading. 

Currently, there are several studies that make use of 

smartphone image to estimate the pose of the user. Google’s 

recently developed feature-based visual positioning system 

(VPS) identifies edges within the smartphone image and 

matches with edges captured from pre-surveyed images in their 

map database [19]. The pose-tagged edges are stored in a 

searchable index and require updates overtime by the users. 

Another area of study focuses on semantic information, such as 

identifying static location-tagged objects (doors, tables, etc.) in 

smartphone images for indoor positioning [20], however 

reference objects are often limited in the outdoor environments. 

Thus, other researchers have studied the use of skyline or 

building boundaries to match with smartphone images [21-24]. 

This provides a mean positional error of 4.5m and rotational 

error of 2-5° at feature rich environments [21]. 

Although both methods are suitable in urban areas where 

GNSS are often blocked by high rise, the former requires 

features extracted from pre-surveyed images for precise 

localization, suffers from image quality dependency, and 

requires frequent updates using the cloud-sourcing data from 

users. While the latter suffers from obscured or non-distinctive 

skyline, prominent in highly urbanized areas where dynamic 

objects dominate the environment. Thus, detection solely on the 

edges and skyline may not be enough for practical use and 

precise positioning. Standing at the point of view of how a 

pedestrian navigate him/herself, in addition to the identification 

of features and skyline, we, human beings, also locate based on 

the visual landmarks that consists of different semantic 

information, and each semantic has a material of its own.  

Inspired from both existing methods, our proposed novel 

solution is the semantic-based VPS by utilizing different types 

of materials that are widely seen and continuously distributed 

in urban scenes. The proposed method offers several major 

advantages over the existing methods.  

• Firstly, we can take advantage of building materials as 

visual aids for precise self-localization, overcoming 

inaccuracies due to non-distinctive or obscured skyline, 

which are common in the urban environments.  

• Secondly, with the use of building information modelling 

(BIM), it does not require pre-surveyed images, hence it is 

highly scalable and low cost.  

• Thirdly, unlike storing feature data as point clouds in a 

searchable index, the semantics of materials are stored as a 

vector map, making it simple to update and label 

accurately. 

• Lastly, the proposed method identifies and considers 

dynamic objects into its scoring system, which are usually 

neglected in previous studies.  

Thus, the paper is an interdisciplinary research paper that 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

integrates the knowledge of BIM, geodesy, image processing, 

and navigation. We believe this interdisciplinary research 

demonstrates a very good solution to provide seamless 

positioning for many futuristic IoT applications. 

The remainders of the paper are organized as follows. Sect. 

2 explains the overview of the proposed semantic-based VPS 

approach. Sect. 3 describes the candidate image generation, 

material identification and image matching in detail. Sect. 4 

describes the experimentation process and the improvement of 

the proposed algorithm verified with existing advanced 

positioning methods. Sect. 5 contains the concluding remarks 

and future work. 

2. OVERVIEW OF THE PROPOSED METHOD 

 An overview of the proposed semantic-based VPS method is 

shown in Fig. 1. The method is divided into two main stages: 

an offline process, and an online process.  

In the offline process, the building models are manually 

segmented into different colors based on the material, which 

grantees a perfect representation of the materials in the 3D city 

model (Sect. 3.1). The segmented city model is used to generate 

cubic projection at each position (Sect. 3.2), they are then 

converted into the equirectangular projection (Sect. 3.3), to 

generate an image at each pose (Sect. 3.4). By storing the 

images in an offline database within the smartphone, we can 

derive a memory-effective representation of accurate reference 

images suitable for smartphone-based data storage. 

Based on the generated images, we propose a semantic-based 

VPS method for smartphone-based urban localization. In the 

online process, the user captures an image with their 

smartphone (Sect. 3.5), with the initial pose estimated by the 

smartphone GNSS receiver, and IMU sensors (Sect. 3.5). Then, 

candidates (hypothesized poses) are spread across a searching 

grid based on the initial pose (Sect. 3.6). The smartphone image 

is then rectified (Sect. 3.7), and segmented based on the 

identified types of materials (Sect. 3.8). The segmented 

smartphone image is de-rectified (Sect. 3.7) and matched with 

the candidate images using multiple metrics to calculate the 

similarity scores (Sect. 3.9). The scores of each method are 

combined to calculate the likelihood of each candidate. (Sect. 

3.10). The chosen pose is determined by the candidate with the 

maximum likelihood among all the candidates (Sect. 3.11). The 

details of the proposed method are described in the following 

section.  

3. PROPOSED METHOD IN DETAIL 

3.1. Textured & Segmented BIM 

The city model used in this research is provided by the 

Surveying and Mapping Office, Lands Department, Hong Kong 

[25]. It consists of only buildings and infrastructures; foliage 

and dynamic objects are not represented in the models. Each 

building model consists of level of detail (LOD) 1-3, stored as 

Virtual Reality Modeling Language (VRML) format. Each 

building model has its own corresponding 2D vector map in 

JPG format that provides textural information of the building. 

The building vector maps were manually labelled, in which 

each pixel in the texture image is assigned a color for the 

material it represents, which can then be used to simulate a 

segmented 3D city model as shown in Fig. 2. In this research, 

we used six classes in total to test the feasibility of the proposed 

method, each class has their own respective RGB color: Sky 

(black), Stone (blue), Glass (green), Metal (orange), Foliage 

(yellow), Others (light blue). The building vector maps were 

labelled manually with the Image Labeler application which is 

part of the Computer Vision Toolbox, MATLAB [26].  

 
Fig. 2. Example of building vector map on the left and the 

corresponding segmented building vector map on the right. 

 

This process will only be conducted once, until the building 

is modified physically in the real environment. It should be 

noted that the vector maps only contain four material classes, 

Stone, Glass, Metal and Others. Sky is identified by the empty 

space in the 3D city model simulation. Foliage is only 

recognized in the smartphone image in the online stage. 

The city model uses the 3D Cartesian meter coordinate 

system on a plane to determine the positioning coordinates. 

Therefore, it was necessary to convert the measured GNSS 

positioning information in (latitude and longitude) back to the 

3D Cartesian coordinate. Thus, we transform between the 

WGS84 Geographic coordinates and Hong Kong 1980 Grid 

coordinates using the equations described by the Surveying and 

Mapping Office, Lands Department, Hong Kong [27]. 

 

3.2. Cubic projection generation 

Each projection and its respective coordinate systems require 

careful clarification. Cubic projection is a method of 

environment mapping that utilizes the six faces of a cube in a 

3D Cartesian coordinate system. The environment is projected 

onto the sides of a cube and stored as six squares. The cube map 

is generated by first rendering the scene of a position six times 

each from a viewpoint, with the views defined by a 90-degree 

angle of view frustum representing each cube face shown in 

Fig. 1. 

Six 90° view frustum square images were captured within 

Simulink 3D Animation, MATLAB [28] with a virtual camera at 

each defined position to map a cubic projection. The defined 

positions store the latitude, longitude, and altitude. Equation (1) 

denotes the generation process. 

𝐩 = [𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑙𝑡] 

𝐼𝑚𝑔𝑐𝑢𝑏𝑖𝑐,𝐩
3𝐷𝑀_𝑠𝑒𝑔

= 𝐶_𝑃(3𝐷𝑀_𝑠𝑒𝑔, 𝐩) 
(1)  

Where 𝐩  is the three-dimensional position, 3𝐷𝑀_𝑠𝑒𝑔  is the 

segmented building model, and 𝐶_𝑃 is the function to capture 

the six images. The cubic projection at a defined position is 

denoted as 𝐼𝑚𝑔𝑐𝑢𝑏𝑖𝑐,𝐩
3𝐷𝑀_𝑠𝑒𝑔

. 
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3.3. Equirectangular projection generation 

The utilization of equirectangular projection is to assist the 

faster generation of images in the offline stage.  Equirectangular 

projection is a common sphere-to-plane mapping, which also 

allows a full spherical view of its surrounding shown in Fig. 1. 

 Equation (2) shows the transforming between cubic and 

equirectangular projection at given position, which requires the 

conversion from Cartesian coordinates to spherical coordinates.  

𝐼𝑚𝑔𝐸𝑅𝑃,𝐩
3𝐷𝑀_𝑠𝑒𝑔

= 𝐸𝑅_𝑃(𝐼𝑚𝑔𝑐𝑢𝑏𝑖𝑐,𝐩
3𝐷𝑀_𝑠𝑒𝑔

) (2)  

Where 𝐸𝑅_𝑃 is the function to convert cubic projection into 

equirectangular projection described in [29]. The 

equirectangular projection at a defined position is denoted as 

𝐼𝑚𝑔𝐸𝑅𝑃,𝐩
3𝐷𝑀_𝑠𝑒𝑔

. 

 Just like the cubic projection, the defined equirectangular 

projection positions store the latitude, longitude, and altitude. 

For practicality, the relationships between the Cartesian 

coordinates and spherical coordinates can be precomputed. This 

means that the angles’ information can be retrieved by mapping 

given Cartesian coordinates in the precompute lookup table, 

reducing offline computational load and time. 

 

3.4. Image generation 

To match with the smartphone image coordinate system, 

further transformation from equirectangular projection to image 

(also called gnomonic projection) is required. The image 

coordinate system uses the 2D Cartesian system [ 𝐮, 𝐯 ] 

described in (3) and (4). 

𝐫 = [𝜓, 𝜃, 𝜑] 
𝐱 = {𝐩, 𝐫} 

𝐼𝑚𝑔𝐱
3𝐷𝑀_𝑠𝑒𝑔

= 𝑅𝐿_𝑃(𝐼𝑚𝑔𝐸𝑅𝑃,𝐩
3𝐷𝑀_𝑠𝑒𝑔

, 𝐫) 

(3)  

Where 𝐫 is the three-dimension rotation, 𝐱 is the state that 

defines the pose which holds the position and rotation. 𝑅𝐿_𝑃 is 

the function to convert equirectangular projection into image 

projection described in [30]. The image at a defined pose is 

denoted as 𝐼𝑚𝑔𝐱
3𝐷𝑀_𝑠𝑒𝑔

. The format of the images can be 

described as: 

𝐼𝑚𝑔𝐱

3𝐷𝑀𝑠𝑒𝑔
= 𝑆𝐼(𝐮𝐱, 𝐯𝐱) 

𝑆𝐼 ∈ {
Sky (0), Stone (1), Glass (2),

Metal (3), Foliage (4), Others (5)
} 

 

(4)  

Where 𝐮𝐱, 𝐯𝐱 are the 2D pixel coordinates of the pixel inside 

the image generated based on the pose 𝐱. 𝑆𝐼 is the function that 

assigns each pixel an indexed number to represent a material 

class. Each image stores its corresponding pose. Fig. 1 shows 

an example of an image generated from the equirectangular 

projection based on a defined pose. It is important to mention 

that the cubic and equirectangular projections are only used to 

assist image generation. The generated images are then stored 

in the smartphone as indexed images to reduce storage size and 

used in the online phase for image matching. 

To match the pose precisely, the generated images must have 

the same intrinsic parameters as the smartphone image 

described in Sect. 3.5. 

 

3.5. Smartphone image acquisition and format 

Since the smartphone image is analyzed according to the 

urban scene, the comparison is likely to perform well when 

there is a richer and more diverse urban scene. Therefore, the 

widest available angle lens is the preferred choice as it is more 

suitable to capture more information of the surrounding urban 

scene in the image. A conventional smartphone camera with a 

120° diagonal field of view, 4:3 aspect ratio, resolution of 

[1000,750] pixels is used to capture images shown in Fig. 1. 

 

3.6. Candidate Pose Distribution 

Candidate poses are distributed around the initial estimated 

pose. The initial rough estimation of the pose is calculated by 

the smartphone GNSS receiver and IMU when capturing an 

image with the smartphone. The candidate latitudes and 

longitudes are distributed around the initial position in a 40m 

radius with 1m resolution. The candidate altitudes remain the 

same as measured by the smartphone due to its already high 

accuracy. The candidate rotation is distributed around initial 

rotation with 30° yaw, 3° pitch and 3° roll with 1° separation. 

The following distribution values were calibrated by finding the 

maximum possible error when comparing the smartphone 

estimated rotation with their ground truth. The poses will then 

be reduced to the specific candidate poses shown in (5). 

𝐗 = {𝐱0 ⋯ 𝐱𝑠} 

 
(5)  

Where 𝑠 is the index of the poses outside of the buildings, 

that is generated offline and saved in a database. Candidate pose 

𝐱𝑗  is extracted from the database 𝐗 , where  𝐱𝑗 ∈  𝐗 , and the 

subscript j is the index of the candidate poses. The 

corresponding image for each candidate pose is denoted as  

𝐼𝑚𝑔𝐱𝑗

3𝐷𝑀_𝑠𝑒𝑔
. The distributed candidate images will then be used 

to compare against the smartphone image. 

 

3.7. Image Rectification/De-Rectification 

Since the feasibility of recognizing objects' appearances 

greatly benefits from the normalization [31], therefore the 

initial camera rotation information is used to perform 

rectification on the images as a preparation for further material 

recognition. The smartphone images are transformed into the 

rectified form. The rectification approximates the smartphone 

image to a unified view that ideally is horizontal and vertically 

level. Fig. 3 shows how an image is captured with the 

smartphone. 

 
Fig. 3. Demonstration of an image captured with a pitch and roll 
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angle. 

 The proposed image rectification assumes that the rotation of 

the camera image is approximately known from the output of 

the smartphone IMU. From this, horizon and keystone 

correction can be performed. The first kind of distortion is 

associated to the roll angle of the camera, whereas the second 

kind is due to the camera pitch angle. The roll and pitch angle, 

associated respectively to horizon and keystone distortion, can 

be corrected, whereas the yaw angle cannot. 

 Horizontal correction is obtained by first rotating the image 

around its centre point by the opposite of the initial estimated 

roll angle. Afterwards, keystone correction is achieved by 

geometrical transform denoted in (6). 

𝐼𝑚𝑔𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑
𝑐𝑎𝑚_𝑟𝑎𝑤 = 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐼𝑚𝑔𝑐𝑎𝑚_𝑟𝑎𝑤) (6)  

Where 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  is the function to transform the 

smartphone image 𝐼𝑚𝑔𝑐𝑎𝑚_𝑟𝑎𝑤  with horizontal and keystone 

correction into the rectified image described in [31]. The 

rectified image is denoted as 𝐼𝑚𝑔𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑
𝑐𝑎𝑚_𝑟𝑎𝑤

. 

The greater the object elements that are further away from 

the horizon is, the greater the distortion is. However, the 

horizon area of the rectified images, which usually contains 

more distinctive features, provides a more suitable input for 

classification. Once combined, it can rectify the image such that 

it is an approximation image taken at horizontal and vertical 

level shown in Fig. 3. Then after segmentation, the image can 

be de-rectified with the reverse of the image rectification 

process. 

 
Fig. 4. Example of smartphone image captured with 45° pitch 

on the left, rectified image on the right. 

 

It should be noted, horizontal and keystone correction 

respectively requires the knowledge of the camera intrinsic 

parameter (principal point, focal lengths). 

 

3.8. Hand Labelled Material Segmentation 

The captured smartphone images were labelled manually 

with the Image Labeler application in MATLAB. In the future, 

however, we plan to utilize a deep learning neural network to 

identify the material automatically. This will be discussed in 

further detail in Section 5. The rectified smartphone image will 

then be hand labelled to output the ideally segmented 

smartphone image illustrated in (7). 

𝐼𝑚𝑔
𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑

𝑐𝑎𝑚𝑠𝑒𝑔
= 𝐻_𝐿(𝐼𝑚𝑔𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑

𝑐𝑎𝑚𝑟𝑎𝑤 ) (7)  

 Where 𝐻_𝐿 is the function to segment the rectified image 

manually. The segmented rectified image is denoted as 

𝐼𝑚𝑔
𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑

𝑐𝑎𝑚𝑠𝑒𝑔
. After segmentation, the image can be de-rectified 

with the reverse of the image rectification equations described 

in (8). 

𝐼𝑚𝑔𝑐𝑎𝑚_𝑠𝑒𝑔 = 𝐷𝑒_𝑅𝑒𝑐𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐼𝑚𝑔𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑
𝑐𝑎𝑚_𝑠𝑒𝑔

) 

𝐼𝑚𝑔𝑐𝑎𝑚_𝑠𝑒𝑔 = 𝑆𝐼(𝐮𝐜𝐚𝐦, 𝐯𝐜𝐚𝐦) 
(8)  

Where 𝐷𝑒_𝑅𝑒𝑐𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  geometrically transforms the 

segmented rectified image to normal segmented image 

𝐼𝑚𝑔𝑐𝑎𝑚_𝑠𝑒𝑔 , shown in Fig. 1. 𝐮𝐜𝐚𝐦, 𝐯𝐜𝐚𝐦  are the 2D pixel 

coordinates of the pixel inside the image captured based on the 

smartphone camera. 

  

3.9. Material Matching 

In the online stage, the candidate images are compared to the 

smartphone image. The matching algorithm calculates the score 

of each candidate image. The target function is to find the 

candidate image with the largest similarity with respect to the 

semantic information of materials. A usual approach is to use 

the region and contours of each material class in the candidate 

image to compare with the corresponding material class in the 

smartphone image. 

 

3.9.1. Dice Metric 

We used Sørensen–Dice coefficient metric to compare the 

region of two material segmented images [32]. Equation (9) 

shows the calculation of the similarity index for each material 

class. 

𝑠𝑖𝑚𝑐𝑙𝑎𝑠𝑠
𝑑𝑖 (𝐼𝑚𝑔𝑐𝑎𝑚𝑠𝑒𝑔 , 𝐼𝑚𝑔

𝑗

3𝐷𝑀𝑠𝑒𝑔
)

=
|𝐼𝑚𝑔

𝑗

3𝐷𝑀𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠) ∩ 𝐼𝑚𝑔𝑐𝑎𝑚𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠)|

0.5 (𝑁
𝑐𝑙𝑎𝑠𝑠,𝑗

3𝐷𝑀𝑠𝑒𝑔
+ 𝑁𝑐𝑙𝑎𝑠𝑠

𝑐𝑎𝑚𝑒𝑟𝑎𝑠𝑒𝑔
)

 

𝑐𝑙𝑎𝑠𝑠 ∋ {𝑠𝑘𝑦, 𝑠𝑡𝑜𝑛𝑒, 𝑔𝑙𝑎𝑠𝑠, 𝑚𝑒𝑡𝑎𝑙, 𝑓𝑜𝑙𝑖𝑎𝑔𝑒, 𝑜𝑡ℎ𝑒𝑟𝑠} 

(9)  

Where 𝑐𝑙𝑎𝑠𝑠  is the index that represents a material, and 

𝑠𝑖𝑚𝑐𝑙𝑎𝑠𝑠
𝑑𝑖 (𝐼𝑚𝑔𝑐𝑎𝑚𝑠𝑒𝑔 , 𝐼𝑚𝑔

𝑗

3𝐷𝑀𝑠𝑒𝑔
) is the similarity index of the 

smartphone image and the candidate image for a material class. 

 A measure to consider is the ratio of the detected region 

compared to the total image size. A smaller matched region 

should have lower weighting, whereas a larger matched region 

should have higher weighting. Therefore, the similarity for each 

segmented material needs to be weighted according to the 

number of pixels they occupy in the candidate image to 

calculate the score of each class represented in (10). 

𝑁
𝑐𝑙𝑎𝑠𝑠,𝑗

3𝐷𝑀𝑠𝑒𝑔
= |𝐼𝑚𝑔

𝑗

3𝐷𝑀𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠)| 

𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠
𝑑𝑖 (𝐱𝑗) = 𝑠𝑖𝑚𝑐𝑙𝑎𝑠𝑠

𝑑𝑖 (𝐼𝑚𝑔𝑐𝑎𝑚_𝑠𝑒𝑔 , 𝐼𝑚𝑔𝑗
3𝐷𝑀_𝑠𝑒𝑔

)

∙ (𝑁
𝑐𝑙𝑎𝑠𝑠,𝑗

3𝐷𝑀𝑠𝑒𝑔
Ntotal⁄ ) 

(10)  

 Where 𝑁
𝑐𝑙𝑎𝑠𝑠,𝑗

3𝐷𝑀𝑠𝑒𝑔
 is the pixel region of a material class in the 

candidate image, and Ntotal is the total number of pixels in an 

image. The dice score of a class is denoted as 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠
𝑑𝑖 (𝐱𝑗). 

 Finally, the score for each material is combined to become 

the score of the candidate shown in (11). 

𝑠𝑐𝑜𝑟𝑒𝑑𝑖(𝐱𝑗) = ∑ 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠
𝑑𝑖 (𝐱𝑗)

𝑐𝑙𝑎𝑠𝑠

 (11)  

 

3.9.2. Jaccard Metric 

The Jaccard coefficient metric is similar to the Dice 

coefficient metric, but satisfy the triangle inequality and 

measures the intersection over the union of the labelled region 
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instead [33]. We used the Jaccard coefficient metric to also 

compare the region of two material segmented images. 

Equation (12) demonstrates the calculation of the similarity 

index for each material class. 

𝑠𝑖𝑚𝑐𝑙𝑎𝑠𝑠
𝑗𝑎

(𝐼𝑚𝑔𝑐𝑎𝑚𝑠𝑒𝑔 , 𝐼𝑚𝑔
𝑗

3𝐷𝑀𝑠𝑒𝑔
)

=
|𝐼𝑚𝑔

𝑗

3𝐷𝑀𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠) ∩ 𝐼𝑚𝑔𝑐𝑎𝑚𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠)|

|𝐼𝑚𝑔
𝑗

3𝐷𝑀𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠) ∪ 𝐼𝑚𝑔𝑐𝑎𝑚𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠)|
 

(12)  

Where 𝑠𝑖𝑚𝑐𝑙𝑎𝑠𝑠
𝑗𝑎

(𝐼𝑚𝑔𝑐𝑎𝑚𝑠𝑒𝑔 , 𝐼𝑚𝑔
𝑗

3𝐷𝑀𝑠𝑒𝑔
)  is the similarity 

index of the smartphone image and the candidate image for a 

material class. Just like the former metric, the similarity for each 

segmented material needs to be weighted according to the 

number of pixels they occupy in the candidate image to 

calculate the score of each class, represented in (13). 

𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠
𝑗𝑎

(𝐱𝑗) = 𝑠𝑖𝑚𝑐𝑙𝑎𝑠𝑠
𝑗𝑎

(𝐼𝑚𝑔𝑐𝑎𝑚_𝑠𝑒𝑔 , 𝐼𝑚𝑔𝑗
3𝐷𝑀_𝑠𝑒𝑔

)

∙ (𝑁
𝑐𝑙𝑎𝑠𝑠,𝑗

3𝐷𝑀𝑠𝑒𝑔
Ntotal⁄ ) 

(13)  

The score of a class is denoted as 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠
𝑗𝑎

(𝐱𝑗). Finally, the 

score for each material is combined to become the score for 

each candidate shown in (14). 

𝑠𝑐𝑜𝑟𝑒𝑗𝑎(𝐱𝑗) = ∑ 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠
𝑗𝑎

(𝐱𝑗)

𝑐𝑙𝑎𝑠𝑠

 (14)  

 
3.9.3. Boundary F1 Metric 

The contour quality significantly contributes to the perceived 

segmentation quality, the Boundary F1 (BF) metric benefits in 

that it evaluates the accuracy of the segmentation boundaries 

[34]. Which are not captured by the Dice and Jaccard metrics, 

as they are regional-based metrics. 

Let us call 𝐵𝑐𝑎𝑚𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠)  the boundary of the class of 

𝐼𝑚𝑔𝑐𝑎𝑚𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠), and likewise 𝐵
𝑗

3𝐷𝑀𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠) the boundary 

of the class of 𝐼𝑚𝑔
𝑗

3𝐷𝑀𝑠𝑒𝑔
. For a distance threshold of 5 pixels, 

the metric disregards the content of the segmentation beyond 

the threshold distance of 5 pixels under which boundaries are 

matched. The precision for a class is defined as: 

𝑃𝑐𝑙𝑎𝑠𝑠(𝐱𝑗)

=
1

|𝐵
𝑗

3𝐷𝑀𝑠𝑒𝑔
|

∑ ⟦𝑑(𝑏, 𝐵𝑐𝑎𝑚𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠))

𝑏∈𝐵
𝑗

3𝐷𝑀𝑠𝑒𝑔
(𝑐𝑙𝑎𝑠𝑠)

< 10⟧ 

(15)  

The recall for a class is defined as: 

𝑅𝑐𝑙𝑎𝑠𝑠(𝐱𝑗)

=
1

|𝐵𝑐𝑎𝑚𝑠𝑒𝑔|
∑ ⟦𝑑 (𝑏, 𝐵

𝑗

3𝐷𝑀𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠))

𝑏∈𝐵𝑐𝑎𝑚𝑠𝑒𝑔(𝑐𝑙𝑎𝑠𝑠)

< 10⟧ 

(16)  

With ⟦ ⟧ as the Iversons bracket notation, where ⟦𝑠⟧ = 1 if 

⟦𝑠⟧ = 𝑡𝑟𝑢𝑒  and 0 otherwise, and 𝑑()  denotes the Euclidean 

distance measured in pixels. The Boundary F1 measure for a 

class is given by: 

𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠
𝑏𝑓

(𝐱𝑗) =
2 ∙ 𝑃𝑐𝑙𝑎𝑠𝑠(𝐱𝑗) ∙ 𝑅𝑐𝑙𝑎𝑠𝑠(𝐱𝑗)

𝑅𝑐𝑙𝑎𝑠𝑠(𝐱𝑗) + 𝑃𝑐𝑙𝑎𝑠𝑠(𝐱𝑗)
 (17)  

The BF score of a class is denoted as 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠
𝑏𝑓

(𝐱𝑗). Finally, 

the score for each material is combined by averaging the score 

over all classes present in the candidate image to become the 

total score for each candidate shown in (18).  

𝑠𝑐𝑜𝑟𝑒𝑏𝑓(𝐱𝑗) =
1

𝑛_𝑐𝑙𝑎𝑠𝑠
∑ 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠

𝑏𝑓
(𝐱𝑗)

𝑐𝑙𝑎𝑠𝑠

 (18)  

 Where 𝑛_𝑐𝑙𝑎𝑠𝑠  is the total number of classes, in this 

research, we used six classes. 

 
3.10. Combined Material Matching 

We considered the score of each method (Dice, Jaccard, BF) 

for the 9 tested images described in Sect. 4 to calibrate their 

respective CDF based on a Gaussian distribution. The scores of 

each method is used to calculate the corresponding probability 

value in their respective distributions. 

𝑝𝑟𝑜𝑏∗(𝐱𝑗) =
1

𝜎∗ ∙ √2𝜋
∙ ∫ 𝑒

−
1
2

(
𝑥−𝜇∗

𝜎∗ )
2

𝑑𝑥

𝑠𝑐𝑜𝑟𝑒∗(𝐱𝑗)

−∞

 (19)  

 

TABLE Ⅰ. Parameters of Gaussian distribution 

Method Standard Deviation Mean 

Dice 0.1813 0.6686 

Jaccard 0.1567 0.5399 

BF 0.1387 0.4275 

Where ∗ is the variable that is dependent on the method, 𝜎 

is the standard deviation and 𝜇 is the mean of the CDF. 

The combined probability becomes the likelihood of each 

candidate. 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝐱𝑗) = 𝑝𝑟𝑜𝑏𝑑𝑖(𝐱𝑗) ∙ 𝑝𝑟𝑜𝑏𝑗𝑎(𝐱𝑗)

∙ 𝑝𝑟𝑜𝑏𝑏𝑓(𝐱𝑗) 
(20)  

 
3.11. Pose Solution 

A higher priority is given to the candidate image with a 

higher likelihood. In theory, the candidate image at ground truth 

should have the maximum likelihood. Thus, the candidate with 

the maximum likelihood is selected as the chosen candidate 

indicated in (21). 

�̂� = arg max
𝐱𝑗

(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝐱𝑗)) (21)  

Where arg max
𝐱𝑗

 is a function that filters the highest total 

score, and �̂� is the estimated candidate pose with the highest 

likelihood. The chosen candidate pose stores the latitude, 

longitude, altitude, yaw, pitch, and roll. 
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4. EXPERIMENTAL RESULTS 

4.1. Image and test location setting 

In this study, the experimental locations were selected within 

the Tsim Sha Tsui and Hung Hom area of Hong Kong, as shown 

in Table Ⅱ. Three locations were selected in challenging deep 

urban canyons surrounded by tall buildings where GNSS 

signals are heavily reflected and blocked. Three images were 

taken at each of the selected locations using a generic 

smartphone camera (Samsung Galaxy Note 20 Ultra 5G 

smartphone with the ultra-wide-lens 13mm 12-MP f/2.2) and a 

tripod. The experimental ground truth positions were 

determined based on Google Earth and nearby identifiable 

landmarks, such as a labelled corner on the ground. Based on 

the experience of previous researches [18, 35], the ground truth 

uncertainty of latitude and longitude is ±1𝑚 and yaw is ±2°. 

The pitch and roll angles are measured using the XPRO geared 

head, Manfrotto, with ±1° uncertainty, respectively. 

The experimental images were chosen with the following 

skyline categorizations: distinctive, symmetrical, insufficient, 

obscured and concealed. Categorizations were based on the 

difficulties experienced by current 3DMA GNSS and vision-

based positioning methods. The smartphone was used to 

capture the images and to record the low-cost GNSS position 

and IMU rotation. The GNSS receiver within the smartphone 

was a Broadcom BCM47755. The IMU was a LSM6DSO 

MEMS and was designed by STMicroelectronics. Images were 

taken at each location with different combinations of scenic 

features to demonstrate the proposed semantic-based VPS 

method. The locations were chosen to test the following 

environments respectively, dense foliage (Loc. 1), along street 

(Loc. 2), and alleyway (Loc. 3). 

 

4.2. Positioning results using ideal segmentation 

The positioning quality of the proposed method was analyzed 

based on the ideal smartphone image segmentation. The 

experimental results were then post-processed and compared to 

the ground truth and different positioning algorithms, 

including: 

1. Proposed semantic-based VPS (Combination of Dice, 

Jaccard and BF Metrics) 

2. Proposed semantic-based VPS (Dice only) 

3. Proposed semantic-based VPS (Jaccard only) 

4. Proposed semantic-based VPS (BF only) 

5. Skyline Matching: Matching using sky and building class 

only [21]. 

6. 3DMA: Integrated solution by 3DMA GNSS algorithm 

on shadow matching, skymask 3DMA and likelihood 

based ranging GNSS [36].  

7. WLS: Weighted Least Squares [37]. 

TABLE Ⅱ. Locations and images tested with the proposed semantic-based VPS method 

Loc. Experimental Images 

1 The Hong Kong Polytechnic University, Hung Hom 

Overview 1.1 1.2 1.3 

    
Overview Obscured Concealed Obscured 

2 Isquare, Tsim Sha Tsui 

Overview 2.1 2.2 2.3 

    
Overview Distinctive Distinctive Distinctive 

3 East Tsim Sha Tsui 

Overview 3.1 3.2 3.3 

    
Overview Symmetrical Insufficient Insufficient 
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8. NMEA: Low-cost GNSS solution by Galaxy S20 Ultra, 

Broadcom BCM47755. 

 

TABLE Ⅲ . Positioning performance comparison of the 

proposed semantic-based VPS and other advanced positioning 

algorithms. 

Loc. Deviation from Ground Truth Error. Unit: meter. 

Semantic-

based VPS 

(Combined) 

Skyline 

Matching 

3DMA WLS NMEA 

1.1 7.07 22.92 7.96 17.66 36.24 

1.2 4.34 22.62 

1.3 5.28 7.14 

1. Avg. 5.56 17.56 

2.1 0.66 14.80 6.87 23.29 7.94 

2.2 1.83 1.58 

2.3 3.43 2.89 

2. Avg. 1.97 6.42 

3.1 29.89 13.57 18.80 46.58 18.89 

3.2 6.61 25.53 

3.3 10.53 24.80 

3. Avg. 15.68 21.30 

All Avg. 7.74 15.09 11.21 29.18 21.02 

 Loc. 1 is in an urban environment with dense foliage, which 

contains multiple non-distinctive medium rise buildings. The 

results show the positioning accuracy of the proposed semantic-

based VPS improves upon the existing advanced positioning 

methods. An error of approximately 5.56 meters from the 

smartphone ground truth suggests that the semantic-based VPS 

can be used as a positioning method in foliage dense 

environments. Utilizing additional material information from 

buildings, it outperforms skyline matching thrice as much. The 

inability of skyline matching was due to the presence of foliage 

obscuring the skyline. Without an exposed skyline, it cannot 

match correctly and risks increasing the positioning error. 

3DMA has shown to correct the positioning to a higher degree, 

coming behind the proposed method. The positioning error of 

WLS and NMEA were likely because of the diffraction of 

GNSS signals passing under the foliage with the combination 

of high-rise buildings.  

 Shown in the heatmap in Table Ⅴ, the proposed method 

using Dice and Jaccard have very large positioning errors, 

possibly due to the lack of distinctive materials captured in the 

smartphone image. The tested location is surrounded by 

buildings of the same shape, size, and material. Therefore, it is 

a very challenging environment for the proposed method as the 

candidate images share a common material distribution. It can 

be seen in this situation, using the BF achieves a higher 

positioning accuracy than the Dice and Jaccard, as it calculates 

the material contour rather than the material region. Thus, with 

the combination of the three metrics, this foliage dense 

environment proved suitable for the proposed method, which 

successfully utilize materials as information for matching. 

Loc. 2 is in a common along street urban environment with 

high rise buildings. The results show the positioning accuracy 

of the proposed method improves the positioning accuracy to 

around two-meter level accuracy. In an environment where 

skyline matching should perform the best, the proposed method 

outperforms skyline matching over thrice as much as well. The 

matching of diverse material distributed in the scene in addition 

to the distinctive skyline has significantly improved positioning 

accuracy. 3DMA lacks behind skyline matching slightly, while 

WLS has increased the positioning error. It should be noted that 

the estimated positioning error for the NMEA is around 8m, 

significantly smaller than that of Loc. 1. This is likely due to the 

relative open area along the street as shown in Table Ⅱ.  

 The heatmap results shown in Table Ⅴ has demonstrated that 

the metrics complement each other when combined. As shown 

in Loc. 2.1, in a scene with diverse materials, the Dice and 

Jaccard have a higher positioning accuracy and achieve a higher 

likelihood over BF. Therefore, the combination of the three 

metrics leans towards the regional based similarities. 

 Loc. 3 is by far the most challenging urban environment for 

the 3DMA GNSS and vision-based positioning methods due to 

the closely compact high rise and visually symmetrical features. 

It can be seen all methods suffer in this environment, and most 

noticeably WLS. The results show that the positioning error of 

the proposed method is nearly 16 meters and can be improved 

significantly. It should be noted that this is still a 35% 

positioning improvement compared to skyline matching. Due 

to the lack of a distinctive skyline, skyline matching can 

potentially risk increasing the positioning error if matched with 

the wrong image, demonstrated at this position. 3DMA lacks 

behind the proposed method, and as demonstrated, only the 

proposed method and 3DMA improves the positioning 

accuracy slightly. 

 The poor results can be explained by two conditions required 

for accurate positioning. Firstly, the images ideally should have 

no segmentation error. This error is not considered in the 

positioning results, as we are assessing the ideal image 

segmentation. Instead, we have analyzed the segmentation error 

in relation to the positioning error is Sect. 4.4. Secondly, ideally 

there should be no discrepancies between the smartphone image 

and the candidate image at ground truth. Loc. 3 suffers from the 

latter as shown in Table Ⅳ.  

 

TABLE Ⅳ. Discrepancy between reality and 3D city model 

 Reality 3D City Model 

Textured 

  
Labelled 

  
This error is shown in the positioning results of Loc. 3, where 

many candidates share a common similarity and color. Thus, it 

is important to ensure the 3D city is constantly updated to 

reflect reality. 
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4.3. Rotational results using ideal segmentation  

The three-dimensional rotational performance of the 

proposed method was analyzed based on the ideal smartphone 

image segmentation, then compared to the smartphone IMU. 

 

TABLE Ⅵ. Rotational performance comparison of the 

proposed semantic-based VPS and smartphone IMU 

Loc. Deviation from Ground Truth Error. Unit: 

degrees. 

Semantic-based 

VPS 

Smartphone IMU 

𝜓 𝜃 𝜑 𝜓 𝜃 𝜑 

1.1 -4 0 -1 -27 -2.0 1.0 

1.2 3 2 -2 7 0.5 -0.5 

1.3 3 2 -1 18 -0.5 0.5 

1. Avg. 3.3 1.3 1.3 17.3 1.0 0.6 

2.1 5 1 -2 11 0.5 -1.0 

2.2 -3 -1 0 18 2.0 0.0 

2.3 1 2 -2 19 -2.0 0.5 

2. Avg. 3 1.3 1.3 16 1.5 0.5 

3.1 2 2 -2 31 1.0 -1.5 

3.2 0 1 0 28 0.5 -0.2 

3.3 0 -2 -2 27 -0.5 -0.2 

3. Avg. 0.6 1.7 1.3 28.6 0.6 1.8 

All Avg. 2.3 1.4 1.3 20.6 1.0 1.0 

  

The results show that, in an urban environment with features, 

the material of buildings can be used to estimate the rotation. 

The yaw, pitch and roll have an accuracy of 2.3, 1.4 and 1.3 

degrees, respectively. However, the smartphone IMU pitch and 

roll estimation is already very accurate compared to the 

proposed method, and thus the proposed method will only 

degrade the estimation. Instead, the proposed method succeeds 

at predicting the yaw accurately within an average of 2.3 

degrees. Hence, the proposed method can be considered an 

accurate approach to estimate the heading of the user in an 

TABLE Ⅴ. Heatmap on the likelihood of candidate images compared to the smartphone image based on the 

proposed semantic-based VPS method 

 

Loc. Heatmap 

 

 

 
1 1.1 1.2 1.3 

   
2 2.1 2.2 2.3 

 
  

3 3.1 3.2 3.3 
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urban environment. 

Therefore, it is suggested that the proposed method should 

use the already accurate altitude, pitch and roll for position and 

yaw estimation. Eliminating the estimation of three dimensions 

will significantly reduce computational load as less candidate 

images are used for matching. 

 

4.4. Segmentation accuracy vs localization results 

To test out how the semantic segmentation accuracy affects 

the localization results, we considered the two conditions 

required for accurate positioning. Ideally, there should be no 

segmentation error and no discrepancies between the 

smartphone image and the candidate image at ground truth. We 

can therefore further classify these two types of errors: contour-

based error and regional-based error. We have tested in our 

experiments that discrepancies can contribute heavily to the 

positioning accuracy, shown in Table Ⅳ where the smartphone 

image differs from the candidate image at ground truth. 

Therefore, we can consider this as a regional-based error as the 

entire region differs between the images. We should also 

consider the contour-based error, which is not demonstrated in 

our experiments, but is reflected in a realistic output of a 

semantic segmentation neural network where the boundaries of 

a region are shifted. Contour error can be problematic for 

boundary related metrics such as the BF metric, which focus on 

the evaluation along the object edges. Getting these correct is 

very important, any shift in alignment can lead to mismatch 

with another candidate image. Thus, we considered the 

candidate images at ground truth to be the ideal images, as there 

is no regional-based error nor contour-based error. We 

purposely mislabeled the ideal images by adding the two types 

of noise to model the amount of segmentation accuracy. 

To model the two types of errors, we performed a Monte-

Carlo simulation. We elastically distorted the ideal image 

randomly to generate over 1000 distorted images described in 

[38], each with a distinctive regional-based and contour-based 

error. We then compared the distorted image with the ideal 

image using two metrics, the combined Dice and Jaccard metric 

for regional-based error, and the BF metric for the contour-

based error. We then used our proposed method to obtain a 

positioning error by comparing the positioning solution of the 

distorted image with the ground truth position. Fig. 5 shows the 

candidate image with contour mislabeled using the elastic 

distortion algorithm. 

  
Fig. 5. Example of a candidate image on the left, and a slightly 

elastically distorted candidate image on the right. 

 

 
Fig. 6. The effects of contour-based error and regional-based 

error on the positioning error of the proposed semantic-based 

VPS. 

 

The results show a good positioning accuracy at lower levels 

of segmentation error. It can be seen the positioning error in the 

0 to 20% segmentation error range is approximately 0-5 meters. 

However, the proposed method begins to suffer when incorrect 

segmentation reaches more than 20% for contour-based error 

and 25% for regional-based error. This is followed by a 

deteriorating positioning performance, where the positioning 

error spreads to 10-20 meters. At 40% contour and regional-

based error, the matching algorithm fails to perform accurately, 

and risk increasing the positioning error. It can be seen at this 

segmentation error range, the distorted image matches with 

random incorrect candidate images, thus the positioning error 

spreads across a wide region.  

The Monte-Carlo simulation results demonstrate the 

importance of a correct contour-based and regional-based 

segmentation, and suggests that to successfully utilize the 

proposed method with a high positioning accuracy, a semantic 

segmentation neural network with no less than 80% 

segmentation accuracy is preferred. The results also suggest 

disabling the proposed method when the smartphone image is 

matched with a candidate image with a segmentation difference 

of more than 20-25%. In such situations, relying on other 

advanced positioning techniques such as 3DMA would likely 

yield better positioning results. 

 

4.5. Discussion on Validity and Limitation 

The proposed method presented in this research permits to 

self-localize based on material that is widely distributed among 

the urban scenes. Provided that the smartphone image 

segmentation is ideal, experiments show that our approach 

outperform the performance of positioning by 45% compared 

to current state of the art methods and improves the 

performance of yaw by 8 times compared to smartphone IMU 

sensors. 
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The pitch and roll estimated by the proposed method, 

however, achieves a lower performance by half a degree 

compared to the smartphone IMU sensors. Hence, it is 

suggested that the proposed method use the already accurate 

pitch and roll estimated by the smartphone IMU sensors. The 

elimination of altitude, pitch and yaw estimation will 

significantly reduce computational load as less candidate 

images are used for matching. 

Another limitation comes from inaccurate segmentation. As 

demonstrated in this research, the 3D model was out of date, 

leading to discrepancies between the smartphone image and 

candidate image at ground truth. It has been shown when the 

segmentation error is greater than 20-25%, the positioning 

performance deteriorates significantly. Therefore, it is 

necessary to update the utilized 3D city model frequently. 

5. CONCLUSIONS AND FUTURE WORK 

5.1. Conclusions 

This paper proposes a novel semantic-based VPS solution for 

pose (six-DOF) estimation by introducing materials as a new 

source of information. In short, the semantic information of 

materials is extracted from the smartphone image and compared 

to the 3D city model generated images. Multiple image 

matching metrics were tested to find the pose of the generated 

image that is closest to the smartphone image chosen with great 

robustness.  

Existing 3DMA vision-integrated approaches for urban 

positioning use either edge features or skyline for positioning. 

This study is a method that extends with both these paradigms 

to formulate the positioning as a semantic-based problem using 

material as the semantic information. Our experiments 

demonstrate that it is possible to outperform existing GNSS and 

advanced GNSS positioning methods in urban canyons. The 

advantages for the semantic-based VPS method are numerous:  

• The formulation of positioning as a semantic-based 

problem enable us to apply the existing wide variety of 

advanced optimization/shape matching metrics to this 

problem.  

• Materials is diverse, distinctive, and distributed 

everywhere, hence the semantic information in an image is 

easy to recognize. 

• The utilization of building materials for positioning 

eliminates the need for skyline and building boundary 

reliance. 

• Identification and consideration of foliage and dynamic 

objects such that it can be removed from positioning. 

• Semantic of buildings stored as vector maps makes it 

simple to update and label accurately. 

Considering the results presented in this paper, we conclude 

the proposed method improves upon the latitude, longitude and 

heading estimation of existing advanced positioning methods. 

5.2. Future Work 

Several potential future developments are suggested.  

• Research has shown it is possible to identify a wide variety 

of materials in images in the indoor environment [39]. 

Therefore, it is suggested to develop and train a deep 

learning neural network to identify materials in smartphone 

images in the outdoor environment for practical use. 

Improvement in the deep learning neural network could 

also aid automatic segmentation of 3D building models, 

reducing the offline preparation time. 

• To add the six common building material classes to 

differentiate (including concrete, stone, glass, metal, wood, 

and bricks) means that given a large and high-quality 

dataset, the proposed method can be adapted to a variety of 

different uses. 

• It is possible to provide computation of depth based on the 

3D city model and the virtual camera, which can then be 

stored as additional information in the generated images. 

This information of depth can allow precise AR after image 

matching. 

• To maximize all available visual information, the 

combination of semantic-based VPS and feature-based 

VPS could yield better positioning performance. 

• To reduce storage and computational load, the images can 

be stored as contour coordinates instead of pixels. 

• The semantic-based VPS could also be further improved 

by extending the functionality to work in different weather, 

time, and brightness conditions. 

• One difficult encountered in this experiment is the 

discrepancy between reality and the 3D city model, hence 

it is suggested to use cloud-sourcing map to continuous 

update the model. 

• For dynamic positioning, we can use a multiresolution 

framework, where the search starts from a big and sparse 

grid and is then successively refined on smaller and denser 

grids. Thus, the pose of the chosen candidate is used to 

refine a smaller search area. 
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